Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
  MedUni Vienna    Intranet    MedUni Vienna - Shop    University Library    University Hospital Vienna  
 
Cluster_Neurowissenschaften_EN.png
 
 
 
Hauptnavigation
  • Home
  • General Information
  • Research
  • Education
  • Press Review
 
Neuroscience /
 
Subnavigation
    News
     

    Pioneering MRI imaging method captures brain glucose metabolism without the need for administration of radioactive substances

    Metabolic disorders play a central role in many common conditions, including Alzheimer's,..

     

    How evolution has influenced the shape of the brain - MedUni Vienna is conducting research into the connections between brain structure and function in humans and animals

    The connections between the structure of the brain and its function are a key focus of..

     

    Gregor Kasprian takes over the professorship for neuroradiology - Expert from MedUni Vienna with a focus on fetal and pediatric neuroradiology

    Gregor Kasprian took over the professorship for neuroradiology (§98) at MedUni Vienna in mid-April..

     

    Sarah Melzer appointed as new member of the Junge Akademie - The Austrian Academy of Sciences (ÖAW) has welcomed new researchers into its ranks

    At the annual election session of the Austrian Academy of Sciences (ÖAW), Sarah Melzer from MedUni..

     

    Silk confirmed as a promising material for repair of injured nerves

    The treatment of nerve injuries with the aid of nerve guidance conduits has led to the desired..

     

    Researcher of the Month - April 2023 - Roman ROMANOV

    Ap. Prof. Dr. Roman ROMANOV, PhD

     

    Vienna as the international research centre for ultrasound brain therapies

    In recent years, ultrasound brain therapies have gained importance worldwide and are considered a..

     
    Treffer 1 bis 7 von 178
    << Erste < Vorherige Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Nächste > Letzte >>
     
Inhaltsbereich

Pioneering MRI imaging method captures brain glucose metabolism without the need for administration of radioactive substances

Metabolic disorders play a central role in many common conditions, including Alzheimer's, depression, diabetes and cancer, which call for reliable as well as non-invasive diagnostic procedures. Until now, radioactive substances have been administered as part of the process of mapping glucose metabolism in the brain. Now, though, a MedUni Vienna research team has developed a completely new magnetic resonance imaging (MRI) approach. Using a harmless glucose solution, the procedure generates reliable results and – in principle – can be used with all common MRI scanners. The findings from the study have just been published in the respected scientific journal Nature Biomedical Engineering.

The study looked at – and has significantly enhanced – current diagnostic procedures for mapping brain glucose metabolism. The results were generated by measuring blood glucose levels and metabolic products in healthy subjects several times during a period of around 90 minutes. In contrast to existing procedures, the subjects did not receive radiolabelled glucose but a quantity of a harmless glucose solution equivalent to a can of a fizzy drink. As this substance does not produce a direct signal for the MR imaging method used, concentrations and metabolism of glucose were measured indirectly based on the drop in signal intensity for the product concerned. “The main advantage of this indirect method is that it can be used on other MR devices without any difficulties, because no additional hardware components are required, as is the case with other, comparable approaches,” explained principal investigator Wolfgang Bogner of the Department of Biomedical Imaging and Image-guided Therapy at MedUni Vienna, highlighting the clinical significance of the research findings.

Broad range of potential applications
Carried out by researchers from the Department of Psychiatry and Psychotherapy and Department of Medicine III at MedUni Vienna, the study used the university’s high-performance 7-Tesla MRI scanner. The device entered operation in 2008 and is still the only ultra-high-field MR scanner available in Austria. Wolfgang Bogner and his team have already demonstrated that the novel approach also works on 3-Tesla MR scanners. “That was an important step, because 3T MR systems are extremely widespread in clinical applications,” said Fabian Niess, lead author of the follow-up study.

Further studies needed to confirm results
Abnormalities in glucose metabolism are a feature of many common diseases. It is already known that cancer and tumour cells consume far greater amounts of glucose than normal cells – an effect that physicians can capitalise on when diagnosing and localising tumours. At present, this is done by means of positron emission tomography in combination with computed tomography (PET-CT), where patients have to be injected with a small amount of radioactive glucose. However, the findings will have to be verified in further studies before the new, less-invasive method developed at MedUni Vienna can be deployed for the benefit of patients.
 

Publications
1.    Nature Biomedical Engineering

1H magnetic resonance spectroscopic imaging of deuterated glucose and of neurotransmitter metabolism at 7 T in the human brain.
Petr Bednarik, Dario Goranovic, Alena Svatkova, Fabian Niess, Lukas Hingerl, Bernhard Strasser, Dinesh Deelchand, Benjamin Spurny-Dworak, Martin Krššák, Siegfried Trattnig, Gilbert Hangel, Thomas Scherer, Rupert Lanzenberger, Wolfgang Bogner.

doi.org/10.1038/s41551-023-01035-z

2.    Investigative Radiology
Noninvasive 3-Dimensional 1H-Magnetic Resonance Spectroscopic Imaging of Human Brain Glucose and Neurotransmitter.
Metabolism Using Deuterium Labeling at 3T Feasibility and Interscanner Reproducibility
Fabian Niess, Lukas Hingerl, Bernhard Strasser, Petr Bednarik, Dario Goranovic, Eva Niess, Gilbert Hangel, Martin Krššák, Benjamin Spurny-Dworak, Thomas Scherer, Rupert Lanzenberger, Wolfgang Bogner.

doi.org/10.1097/RLI.0000000000000953

 

 

zurück zu: Neuroscience
 
 
Print
 
 
© MedUni Wien | Publishing information | Terms of use | Data Protection | Accessibility | Contact